Congenital Cardiac Anesthesia Society
A Section of the the Society for Pediatric Anesthesia

Congenital Cardiac Anesthesia Society

  • Member Login
  • Forgot Password?
  • Join
  • Home
  • About
    • Mission Statement
    • Bylaws
    • Board of Directors
    • History
    • Past Presidents
    • Charter Members
    • CCAS Lifetime Achievement Award
    • Mailing List Rental
    • Contact Us
  • Partners
    • SPA
    • SPPM
    • PALC
    • PCICS
    • AmSECT
    • SMACT
    • CHA
    • CCAN
  • Committees
    • CCAS Committees
      • Pediatric Cardiac Anesthesiology Program Director’s Group (PCAPD) Committee
      • Communications Committee
      • CCAS-STS Database Committee
      • Education Committee
      • Global Health Committee
      • Membership Committee
      • Quality and Safety Committee
      • Research Committee
    • CCAS Special Interest Groups
      • Adult Congenital Heart Disease Special Interest Group (SIG)
      • ERAS Special Interest Group (SIG)
      • Hemostasis Special Interest Group (SIG)
      • Latin America Special Interest Group (SIG)
      • Pulmonary Hypertension Special Interest Group (SIG)
      • Trainee Special Interest Group (SIG)
  • Membership
    • Benefits of Membership
    • CCAS Member App
    • Membership Categories
    • Join CCAS
      • Online Application
      • Printable Application
    • Renew Your Dues
    • Sponsor a Member
    • Get Involved
  • Meetings
    • Upcoming Meetings
    • Past Meetings
    • Other Meetings
    • Exhibit Information
  • Education
    • CCAS Virtual Visiting Professor Program
    • CCAS Webinar Series
      • CCAS Webinar Series – Recordings
    • CCAS COVID 19 Webinar
    • ACHD-SIG Anesthesia Rounds
    • Lecture Series
    • Echo Tutorial
    • Archived Questions
    • Poll of the Month Archives
    • Review Articles
      • CCAS-CHiP Network Journal Watch Collaboration
      • SCVA Articles
    • Journals of Interest
    • Books of Interest
    • Educational Links
  • Resources
    • CCAS Position Statements
    • CCAS Committee Resources
    • CCAS Special Interest Group (SIG) Resources
    • CCAS Cognitive Aids
    • Newsletters
    • Research Resources
    • Mission Trips
    • Societies
    • Job Opportunities
  • Research
    • Research Committee
    • CCAS 2025 Meeting Scholarship for Students and Residents
    • Research Network & Collaborative Opportunities
    • Research Resources
    • Dolly D. Hansen, MD Research Award
    • New for 2026! CCAS QI/Education Award
    • Podcast Series for Aspiring CCAS Researchers
    • Highlight on a CCAS Researcher
    • Call for Surveys
    • STS-CCAS Database
    • Donate to the Dolly Hansen Fund
  • Trainees
    • Introduction to Pediatric Cardiac Anesthesiology
    • Trainee Lecture Series
    • Advanced Training
    • Pediatric Cardiac Anesthesiology Fellowship Common Goals and Objectives
    • Frequently Asked Questions
    • Pediatric Cardiac Anesthesia Education Resources
    • Coaching/Mentoring Initiative
  • Patients
    • FAQs for Cardiac Anesthesia
    • FAQs for Cardiac Anesthesia – Spanish
    • SmartTots FAQs for Parents
    • Useful Resources for Parents

Question of the Week 445

Author: Melissa Colizza, MD - Centre Hospitalier Universitaire Sainte-Justine - Montreal, Quebec


A seven-year-old, 23 kg male has a left ventricular-assist device (LVAD) due to dilated cardiomyopathy. Which of the following devices is associated with the HIGHEST risk of thromboembolic complications?

Correct! Wrong!

EXPLANATION


Heart failure affects 0.7-7.4 children per 10,000 globally. The mortality rate is 7-15% in patients with severe heart failure in the United States. Although heart transplantation is a definitive treatment, the number of patients on the heart transplant waiting list exceeds the number of donor hearts available. Thus, mechanical support with extracorporeal membrane oxygenation (ECMO) or ventricular assist devices (VADs) has been utilized as a bridge-to-recovery, bridge-to-transplant, or destination therapy. VAD placement prior to the onset of end-organ dysfunction reduces waitlist mortality, but there are still significant complications associated with VADs. Appropriate VAD selection in the pediatric population remains challenging. Patient size (body surface area) and anticipated duration of support are the primary considerations when choosing a particular device. The ideal device would account for the physiologic differences in pediatric versus adult patients with minimal risk of hemolysis or thromboembolism.


The Berlin Heart EXCOR (BHE), a paracorporal pulsatile flow device, has been used in the pediatric population since the 1990s and is the only FDA-approved VAD for children with a body surface area (BSA) less than 0.6 m2. The volume capacity of the BHE pneumatic pump and set heart rate determine cardiac output. The BHE has been used successfully as a bridge to recovery and bridge to transplantation in children. However, BHE implantation is associated with a higher rate of thrombosis and adverse neurological events compared to the continuous-flow devices. A 2018 literature review (including 27 studies) analyzing antithrombotic therapies and thromboembolic complications in 558 children with different types of VADs (87% BHE and 1.8% Heartware HVAD) by Huang et al reported an overall incidence of thromboembolic events in 26% of patients. The overall incidence of thromboembolic complications ranged from 22 to 56% in patients with the BHE the studies included.


Conversely, there is a lower rate of thromboembolic events with continuous-flow devices. Rates of thromboembolic events in patient cohorts with the Heartmate II (HM2) in the early 2010s were reported at less than 15%. The newer generation, Heartmate III (HM3), is another continuous-flow device with magnetically levitated bearings and intrinsic pulsatility, allowing ejection through the aortic valve thereby decreasing the shear stress and compressive forces on blood which is known to lead to thrombosis. It has been the only FDA-approved long-term continuous-flow device for children since the recall of the Heartware (HVAD) in 2021. A 2020 study by O'Connor and colleagues investigated outcomes in 35 pediatric and adult congenital cardiac patients who had undergone HM3 implantation. They reported no episodes of pump thrombosis, pump dysfunction requiring exchange, or stroke. While the recommended patient body surface area for HM3 implantation is greater than 1.4 m2, successful implantation has been reported in a patient with a BSA of 0.78 m2. A 2022 meta-analysis by George and colleagues (using twelve papers) investigated the complications associated with different types of VADs placed in infants and children. The study demonstrated that the BHE was associated with the highest risk of thromboembolic complications compared with the HVAD and HM3 (continuous flow devices). The authors postulate that this increased risk may be related to the more complex design of pulsatile VADs, such as one-way valves, which create areas of stagnant flow. In contrast, with continuous-flow devices, thrombosis may be caused by increased shear stress and heat generated by the pump. Although the HeartWare HVAD was commonly used in older children, it was withdrawn from the markets in 2021 due to an increased risk of neurological complications and technical failure related to the battery.


The HM3 seems to be the most promising mechanical support device with respect to safety and freedom from thromboembolic events. However, the BHE remains the only FDA approved device that is available on the market for neonates, whom are intrinsically at a higher risk for both thromboembolic and hemorrhagic complications. Notably, it is important to remember that anticoagulation protocols vary between individual patients, devices, and institutions.


REFERENCES


Horton SB, Skinner A, Landa AB, Stayer SA, Motta P. Mechanical Circulatory Support. In Andropoulos DB, Mossad EB, Gottlieb EA, eds. Anesthesia for Congenital Heart Disease .Fourth edition. John Wiley & Sons, Inc.; 2023. pp. 996-1025.


Huang JY, Monagle P, Massicotte MP, VanderPluym CJ. Antithrombotic therapies in children on durable ventricular assist devices: A literature review. Thromb Res .2018; 172:194-203. DOI: 10.1016/j.thromres.2018.02.145


George AN, Hsia TY, Schievano S, Bozkurt S. Complications in children with ventricular assist devices: systematic review and meta-analyses. Heart Fail Rev .2022;27(3):903-913. doi: 10.1007/s10741-021-10093-x


Schweiger M, Hussein H, de By TMMH, et al. Use of Intracorporeal Durable LVAD Support in Children Using HVAD or HeartMate 3-A EUROMACS Analysis. J Cardiovasc Dev Dis .2023;10(8):351. Published 2023 Aug 17. doi: 10.3390/jcdd10080351


O'Connor MJ, Lorts A, Davies RR, et al. Early experience with the HeartMate 3 continuous-flow ventricular assist device in pediatric patients and patients with congenital heart disease: A multicenter registry analysis. J Heart Lung Transplant .2020;39(6):573-579. 10.1016/j.healun.2020.02.007

Poll of the Month

June 2025
At your institution, do patients presenting for elective cardiac surgery who are found to be anemic on routine testing undergo formal preoperative anemia testing and treatment?
View Results
Total Answers 22
Total Votes 22

Upcoming Meeting Information


CCAS 2026 Annual Meeting

March 12, 2026
Sheraton Denver Downtown
Denver, CO

 

 

 

 

Join CCAS
Renew
Donate
Get Involved
Upcoming
Job Postings
  • Member Login
  • Forgot Password?
2209 Dickens Road, Richmond, VA 23230 • 804-282-9780 • [email protected]
Copyright © 2025 The Congenital Cardiac Anesthesia Society | View Privacy Policy