Congenital Cardiac Anesthesia Society
A Section of the the Society for Pediatric Anesthesia

Congenital Cardiac Anesthesia Society

  • Member Login
  • Forgot Password?
  • Join
  • Home
  • About
    • Mission Statement
    • Bylaws
    • Board of Directors
    • History
    • Past Presidents
    • Charter Members
    • CCAS Lifetime Achievement Award
    • Mailing List Rental
    • Contact Us
  • Partners
    • SPA
    • SPPM
    • PALC
    • PCICS
    • AmSECT
    • SMACT
    • CHA
    • CCAN
  • Committees
    • CCAS Committees
      • Pediatric Cardiac Anesthesiology Program Director’s Group (PCAPD) Committee
      • Communications Committee
      • CCAS-STS Database Committee
      • Education Committee
      • Global Health Committee
      • Membership Committee
      • Quality and Safety Committee
      • Research Committee
    • CCAS Special Interest Groups
      • Adult Congenital Heart Disease Special Interest Group (SIG)
      • ERAS Special Interest Group (SIG)
      • Hemostasis Special Interest Group (SIG)
      • Latin America Special Interest Group (SIG)
      • Pulmonary Hypertension Special Interest Group (SIG)
      • Trainee Special Interest Group (SIG)
  • Membership
    • Benefits of Membership
    • CCAS Member App
    • Membership Categories
    • Join CCAS
      • Online Application
      • Printable Application
    • Renew Your Dues
    • Sponsor a Member
    • Get Involved
  • Meetings
    • Upcoming Meetings
    • Past Meetings
    • Other Meetings
    • Exhibit Information
  • Education
    • CCAS Virtual Visiting Professor Program
    • CCAS Webinar Series
      • CCAS Webinar Series – Recordings
    • CCAS COVID 19 Webinar
    • ACHD-SIG Anesthesia Rounds
    • Lecture Series
    • Echo Tutorial
    • Archived Questions
    • Poll of the Month Archives
    • Review Articles
      • CCAS-CHiP Network Journal Watch Collaboration
      • SCVA Articles
    • Journals of Interest
    • Books of Interest
    • Educational Links
  • Resources
    • CCAS Position Statements
    • CCAS Committee Resources
    • CCAS Special Interest Group (SIG) Resources
    • CCAS Cognitive Aids
    • Newsletters
    • Research Resources
    • Mission Trips
    • Societies
    • Job Opportunities
  • Research
    • Research Committee
    • CCAS 2025 Meeting Scholarship for Students and Residents
    • Research Network & Collaborative Opportunities
    • Research Resources
    • Dolly D. Hansen, MD Research Award
    • New for 2026! CCAS QI/Education Award
    • Podcast Series for Aspiring CCAS Researchers
    • Highlight on a CCAS Researcher
    • Call for Surveys
    • STS-CCAS Database
    • Donate to the Dolly Hansen Fund
  • Trainees
    • Introduction to Pediatric Cardiac Anesthesiology
    • Trainee Lecture Series
    • Advanced Training
    • Pediatric Cardiac Anesthesiology Fellowship Common Goals and Objectives
    • Frequently Asked Questions
    • Pediatric Cardiac Anesthesia Education Resources
    • Coaching/Mentoring Initiative
  • Patients
    • FAQs for Cardiac Anesthesia
    • FAQs for Cardiac Anesthesia – Spanish
    • SmartTots FAQs for Parents
    • Useful Resources for Parents

QOW 504

Authors: Philicia Findlay-Hardyal, MD and Arturo Marrero, MD- Georgetown Public Health Corporation - Georgetown, Guyana AND Destiny F. Chau, MD - Arkansas Children’s Hospital/University of Arkansas for Medical Sciences, Little Rock, AR, USA


A 3-month-old infant with a suspected vascular ring is undergoing rigid bronchoscopy, which demonstrates the presence of complete tracheal rings. Which of the following types of vascular rings is MOST likely present in this patient?

Correct! Wrong!

EXPLANATION


Vascular rings describe congenital anomalies whereby the aortic arch and its primary branches form a circle around the trachea, the esophagus, or both, potentially resulting in tracheal and/or esophageal obstruction and obstructive symptoms. The incidence of isolated vascular rings has been reported as seven in 10,000 live births (0.07%). As vascular rings are rare, diagnosis requires a high index of clinical suspicion. Patients may be misdiagnosed with refractory asthma and/or gastrointestinal pathology, thus deferring further workup until the vascular ring is finally diagnosed.


The embryologic mechanism for vascular rings originates from the interruption at different stages of the normal regression of the six pharyngeal arches that are connected to the dorsal aortae during the embryologic development of the aortic arch and its main branches. This results in the persistence of vascular structures or ligamentous remnants that may compress the trachea or esophagus.


The majority of vascular ring malformations can be classified into the following grouping system described by Backer and Mavroudis:


A. Double aortic arch: the left and right aortic arches encircle the trachea and esophagus.


B. Right aortic arch with left ligamentum: the aortic arch is to the right of the trachea, with the ligamentum connecting the main pulmonary artery to the descending aorta.


C. Innominate artery compression syndrome: the innominate artery compresses the anterior trachea by over 80%.


D. Pulmonary artery sling: the left pulmonary artery originates from the right pulmonary artery traveling posteriorly, between the trachea and esophagus.


The figure below illustrates reconstructed computed tomography of the different types of vascular rings.


Figure: Vascular rings reconstructed from cardiac computed tomography. A: double aortic arch; two aortic arches (white bold arrows) comprise the complete ring in this patient. B: right aortic arch with persistent left ligamentum arteriosum; Kommerell's diverticulum (arrowhead) and fibrotic band (white dotted arrows) comprise the complete ring in this patient. C: right aortic arch with aberrant left subclavian artery (red bold arrow). D: pulmonary sling; left pulmonary artery originates from the right pulmonary artery (red dotted arrow), compressing the bronchus. Source: Suh YJ, Kim GB, Kwon BS, et al. The clinical course of vascular rings and risk factors associated with mortality. Korean Circ J. 2012;42(4):252-258. doi:10.4070/kcj.2012.42.4.252- Creative Commons License


Once clinical suspicion arises, confirmatory diagnosis is usually made by cardiac computed tomography or magnetic resonance imaging. Echocardiography is unreliable for definitive diagnosis but does aid in the detection of associated cardiac anomalies occurring in approximately 12% of patients. Bronchoscopy allows for the delineation of tracheal abnormalities, such as tracheobronchomalacia, and for the detection of complete tracheal rings.


Except for pulmonary artery slings, vascular ring repair is usually performed through a thoracotomy for surgical division of the ring. Surgical repair of a pulmonary artery sling is performed through a median sternotomy approach and under cardiopulmonary bypass, as the left pulmonary artery needs to be translocated. Additionally, 60-80% of patients with pulmonary artery slings also have tracheal stenosis secondary to complete cartilaginous tracheal rings, which are repaired during the same procedure. Tracheal reconstruction is usually recommended after the vascular ring repair to avoid contamination of the surgical field from secretions within the trachea. The most common repair for complete tracheal rings is a slide tracheoplasty for long-segment stenosis. Resection of a short, narrowed segment of complete tracheal rings may be repaired with an end-to-end anastomosis. Although survival rates are excellent, patients often require repeat airway evaluation and intervention for persistent tracheomalacia, granuloma formation, or balloon dilation. Patients also require regular follow-up to evaluate for the development of left pulmonary artery stenosis.


In this infant, the presence of the complete tracheal rings indicates a moderate to high probability of a pulmonary artery sling. Although double aortic arch and right aortic arch/left ligamentum are much more common than pulmonary artery slings, they are not typically associated with complete tracheal rings.


REFERENCES


Wadle M, Joffe D, Backer C, Ross F. Perioperative and anesthetic considerations in vascular rings and slings. Semin Cardiothorac Vasc Anesth. 2024;28(3):152-164. doi:10.1177/10892532241234404


Worhunsky DJ, Levy BE, Stephens EH, Backer CL. Vascular rings. Semin Pediatr Surg. 2021;30(6):151128. doi:10.1016/j.sempedsurg.2021.151128


McKenzie I, Markakis Zestos M, Stayer S, Kaminski E, Davies P, Andropoulos D. Anesthesia for miscellaneous lesions. In: Andropoulos D, Mossad E, Gottlieb E, eds. Anesthesia for Congenital Heart Disease. 4th Edition. New Jersey: John Wiley & Sons, Inc.; 2023: 816-820.


Suh YJ, Kim GB, Kwon BS, et al. Clinical course of vascular rings and risk factors associated with mortality. Korean Circ J. 2012;42(4):252-258. doi:10.4070/kcj.2012.42.4.252


Poll of the Month

May 2025
At your institution, do you routinely send a TEG/ROTEM during the rewarming phase of cardiopulmonary bypass?
View Results
Total Answers 130
Total Votes 130

Upcoming Meeting Information


CCAS 2026 Annual Meeting

March 12, 2026
Sheraton Denver Downtown
Denver, CO

 

 

 

 

Join CCAS
Renew
Donate
Get Involved
Upcoming
Job Postings
  • Member Login
  • Forgot Password?
2209 Dickens Road, Richmond, VA 23230 • 804-282-9780 • [email protected]
Copyright © 2025 The Congenital Cardiac Anesthesia Society | View Privacy Policy